Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin-Hua Li, ${ }^{\text {a }}$ * Feng-Yi Xia, ${ }^{\text {b }}$ Hong-Ping Xiao ${ }^{\mathrm{a}}$ and Mao-Lin Hu ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou
325027, People's Republic of China, and
${ }^{\mathbf{b}}$ School of Biological and Environmental Sciences, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: xhli@wznc.zj.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{Cl}-\mathrm{O})=0.003 \AA$
R factor $=0.032$
ωR factor $=0.105$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexaaquacopper(II) diperchlorate dihydrate

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, six water molecules are coordinated to one Cu^{2+} ion, which lies on an inversion centre. The geometry around the Cu^{2+} ion is that of an octahedron. The coordinated water molecules, uncoordinated water molecules and perchlorate ions are linked by hydrogen bonds into a network structure.

Comment

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Directional intermolecular interactions are the primary tools in achieving this goal and hydrogen bonding is currently the best among them (Zaworotko, 1997; Braga \& Grepioni, 2000). We report here the structure of hexaaquacopper(II) diperchlorate dihydrate, (I).

The asymmetric unit of (I) consists of one half of a $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation, a $\mathrm{ClO}_{4}{ }^{-}$anion and a water molecule. The copper cation lies on an inversion centre, and the geometry around the Cu^{2+} ion is that of an octahedron, with bonds to six water molecules (Fig. 1 and Table 1). The coordinated water molecules, uncoordinated water molecules and perchlorate ions interact through hydrogen bonds (Fig. 2), generating a three-dimensional network.

Experimental

Copper chloride dihydrate ($0.06 \mathrm{~g}, 0.3 \mathrm{mmol}$) was dissolved in water $(10 \mathrm{ml})$ and the solution was mixed with a dimethylformamide solution (10 ml) of $2,2^{\prime}$-dithiosalicylic acid $(0.08 \mathrm{~g}, 0.2 \mathrm{mmol})$ and
1

Received 19 January 2004
Accepted 28 January 2004
Online 7 February 2004

Figure 2

A view of the hydrogen-bonded three-dimensional network in (I).
ammonium pyrrolidine dithiocarbamate $(0.06 \mathrm{~g}, \quad 0.4 \mathrm{mmol})$. Perchloric acid $(0.4 \mathrm{ml})$ was added dropwise. The reaction mixture was filtered; blue prism-shaped crystals were separated from the solution after about a month. As shown by the crystal structure analysis, the dithiosalicylate and ammonium pyrrolidine dithiocarbamate entities were not incorporated into the product.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=406.57$
Monoclinic, $P 2_{1} / c$
$a=6.2908$ (3) \AA
$b=12.4043$ (6) \AA
$c=9.2181$ (5) A
$\beta=106.146$ (2) ${ }^{\circ}$
$V=690.94(6) \mathrm{A}^{3}$
$Z=2$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\text {min }}=0.290, T_{\text {max }}=0.555$
3539 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.105$
$S=1.17$
1244 reflections
88 parameters
H -atom parameters constrained
$D_{x}=1.954 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3539
reflections
$\theta=2.8-25.2^{\circ}$
$\mu=2.05 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Prism, pale blue
$0.60 \times 0.52 \times 0.29 \mathrm{~mm}$

> 1244 independent reflections
> 1214 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.016$
> $\theta_{\max }=25.2^{\circ}$
> $h=-5 \rightarrow 7$
> $k=-14 \rightarrow 14$
> $l=-10 \rightarrow 11$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0626 P)^{2}\right. \\
& \quad+0.7948 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.47 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 5$	$1.969(2)$	$\mathrm{Cu} 1-\mathrm{O} 7$	$2.202(2)$
$\mathrm{Cu} 1-\mathrm{O} 6$	$2.084(2)$		
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	180	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 7$	$90.58(9)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 6^{\mathrm{i}}$	$91.09(9)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 7$	$88.68(9)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 6$	$88.91(9)$	$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{O} 7$	$91.32(9)$
$\mathrm{O} 6^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 6$	180	$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 7^{\mathrm{i}}$	180
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 7$	$89.42(9)$		

Symmetry code: (i) $2-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {ii }}$	0.82	1.92	2.733 (3)	174
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O}{ }^{\text {iii }}$	0.82	1.87	2.686 (3)	174
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 3^{\text {iv }}$	0.81	1.90	2.716 (3)	176
$\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O} 4^{\text {v }}$	0.82	1.94	2.748 (3)	172
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 4^{\text {ii }}$	0.81	2.02	2.820 (3)	168
$\mathrm{O} 7-\mathrm{H} 7 \cdots \mathrm{O} 2^{\text {vi }}$	0.81	2.02	2.825 (3)	172
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 1^{\text {vii }}$	0.83	2.19	2.984 (4)	162
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2$	0.83	2.04	2.860 (4)	176

Symmetry codes: (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $x, y, z-1$; (iv) $2-x, y-\frac{1}{2}, \frac{3}{2}-z$; (v) $2-x,-y, 1-z ;\left(\right.$ vi) $1+x, \frac{1}{2}-y, z-\frac{1}{2} ;$ (vii) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$.

H atoms were located in a difference map and were made to ride on their parent O atoms, with $\mathrm{O}-\mathrm{H}=0.81-0.83 \AA$ and $U_{\text {iso }}=$ $1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL.

The authors thank the Wenzhou S\&T Project of China (No. S2003A008) and '551' Distinguished Person Foundation of Wenzhou.

References

Braga, D., Grepioni, F. \& Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1386.
Braga, D. \& Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.
Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1995). Angew Chem. Int. Ed. Engl. 34, 2311-2315.
Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1476.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National
Laboratory, Tennessee, USA.
Zaworotko, M. J. (1997). Nature (London), 386, 220-226.

