Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xin-Hua Li,^a* Feng-Yi Xia,^b Hong-Ping Xiao^a and Mao-Lin Hu^a

^aSchool of Chemistry and Materials Science,
Wenzhou Normal College, Zhejiang, Wenzhou
325027, People's Republic of China, and
^bSchool of Biological and Environmental
Sciences, Wenzhou Normal College, Zhejiang,
Wenzhou 325027, People's Republic of China

Correspondence e-mail: xhli@wznc.zj.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (Cl–O) = 0.003 Å R factor = 0.032 wR factor = 0.105 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Hexaaquacopper(II) diperchlorate dihydrate

In the title compound, $[Cu(H_2O)_6](ClO_4)_2 \cdot 2H_2O$, six water molecules are coordinated to one Cu^{2+} ion, which lies on an inversion centre. The geometry around the Cu^{2+} ion is that of an octahedron. The coordinated water molecules, uncoordinated water molecules and perchlorate ions are linked by hydrogen bonds into a network structure. Received 19 January 2004 Accepted 28 January 2004 Online 7 February 2004

Comment

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga *et al.*, 1998). Directional intermolecular interactions are the primary tools in achieving this goal and hydrogen bonding is currently the best among them (Zaworotko, 1997; Braga & Grepioni, 2000). We report here the structure of hexaaquacopper(II) diperchlorate dihydrate, (I).

The asymmetric unit of (I) consists of one half of a $[Cu(H_2O)_6]^{2+}$ cation, a ClO_4^- anion and a water molecule. The copper cation lies on an inversion centre, and the geometry around the Cu^{2+} ion is that of an octahedron, with bonds to six water molecules (Fig. 1 and Table 1). The coordinated water molecules, uncoordinated water molecules and perchlorate ions interact through hydrogen bonds (Fig. 2), generating a three-dimensional network.

Experimental

Copper chloride dihydrate (0.06 g, 0.3 mmol) was dissolved in water (10 ml) and the solution was mixed with a dimethylformamide solution (10 ml) of 2,2'-dithiosalicylic acid (0.08 g, 0.2 mmol) and

Figure 1

ORTEPII (Johnson, 1976) plot of (I), showing 50% probability displacement ellipsoids. Only the contents of the asymmetric unit are labelled.

Acta Cryst. (2004). E60, i31–i32

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 2

A view of the hydrogen-bonded three-dimensional network in (I).

ammonium pyrrolidine dithiocarbamate (0.06 g, 0.4 mmol). Perchloric acid (0.4 ml) was added dropwise. The reaction mixture was filtered; blue prism-shaped crystals were separated from the solution after about a month. As shown by the crystal structure analysis, the dithiosalicylate and ammonium pyrrolidine dithiocarbamate entities were not incorporated into the product.

Crystal data

F			
$[Cu(H_2O)_6](ClO_4)_2 \cdot 2H_2O$	$D_x = 1.954 \text{ Mg m}^{-3}$		
$M_r = 406.57$	Mo $K\alpha$ radiation		
Monoclinic, $P2_1/c$	Cell parameters from		
a = 6.2908 (3) Å	reflections		
b = 12.4043 (6) Å	$\theta = 2.8-25.2^{\circ}$		
c = 9.2181(5) Å	$\mu = 2.05 \text{ mm}^{-1}$		
$\beta = 106.146 \ (2)^{\circ}$	T = 273 (2) K		
$V = 690.94 (6) \text{ Å}^3$	Prism, pale blue		
Z = 2	$0.60 \times 0.52 \times 0.29$ m		
Data collection			
Bruker SMART APEX area-	1244 independent r		

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.290, \ T_{\max} = 0.555$ 3539 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.105$ S = 1.171244 reflections 88 parameters H-atom parameters constrained om 3539 mm

1244 independent reflections 1214 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.016$ $\theta_{\rm max} = 25.2^{\circ}$ $h = -5 \rightarrow 7$ $k = -14 \rightarrow 14$ $l = -10 \rightarrow 11$ $w = 1/[\sigma^2(F_o^2) + (0.0626P)^2]$ + 0.7948P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

1.969 (2)	Cu1-O7	2.202 (2)
2.084 (2)		
180	O5 ⁱ -Cu1-O7	90.58 (9)
91.09 (9)	$O6^{i}-Cu1-O7$	88.68 (9)
88.91 (9)	O6-Cu1-O7	91.32 (9)
180	O7-Cu1-O7 ⁱ	180
89.42 (9)		
	2.084 (2) 180 91.09 (9) 88.91 (9) 180	$\begin{array}{ccc} 2.084 & (2) \\ 180 & O5^{i} - Cu1 - O7 \\ 91.09 & (9) & O6^{i} - Cu1 - O7 \\ 88.91 & (9) & O6 - Cu1 - O7 \\ 180 & O7 - Cu1 - O7^{i} \end{array}$

Symmetry code: (i) 2 - x, -y, -z.

Table 2 Hydrogen-bonding geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.82	1.92	2.733 (3)	174
0.82	1.87	2.686 (3)	174
0.81	1.90	2.716 (3)	176
0.82	1.94	2.748 (3)	172
0.81	2.02	2.820 (3)	168
0.81	2.02	2.825 (3)	172
0.83	2.19	2.984 (4)	162
0.83	2.04	2.860 (4)	176
	0.82 0.82 0.81 0.82 0.81 0.81 0.83	$\begin{array}{cccccccc} 0.82 & 1.92 \\ 0.82 & 1.87 \\ 0.81 & 1.90 \\ 0.82 & 1.94 \\ 0.81 & 2.02 \\ 0.81 & 2.02 \\ 0.83 & 2.19 \end{array}$	0.82 1.92 2.733 (3) 0.82 1.87 2.686 (3) 0.81 1.90 2.716 (3) 0.82 1.94 2.748 (3) 0.81 2.02 2.820 (3) 0.81 2.02 2.825 (3) 0.83 2.19 2.984 (4)

Symmetry codes: (ii) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (iii) x, y, z - 1; (iv) $2 - x, y - \frac{1}{2}, \frac{3}{2} - z$; (v) 2 - x, -y, 1 - z; (vi) $1 + x, \frac{1}{2} - y, z - \frac{1}{2}$; (vii) $1 - x, \frac{1}{2} + y, \frac{3}{2} - z$.

H atoms were located in a difference map and were made to ride on their parent O atoms, with O-H = 0.81-0.83 Å and U_{iso} = $1.5U_{eq}(O).$

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL.

The authors thank the Wenzhou S&T Project of China (No. S2003A008) and '551' Distinguished Person Foundation of Wenzhou.

References

Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1386. Braga, D. & Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Desiraju, G. R. (1995). Angew Chem. Int. Ed. Engl. 34, 2311-2315.

Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1476.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Zaworotko, M. J. (1997). Nature (London), 386, 220-226.